ON ZHUKOVSKY FUNCTION

Zhukovsky function

$$
w=\frac{1}{2}\left(z+\frac{1}{z}\right)=\lambda(z)
$$

maps conformally both the exterior and interior of the unit circle S^{1} in the z-plane onto the complement to the interval $[-1,1]$. It is a $2-1$ mapping of $S^{1} \backslash\{1,-1\}$ onto $(-1,1)$.

Since

$$
\lambda^{\prime}(z)=\frac{1}{2}\left(1-\frac{1}{z^{2}}\right),
$$

Zhukovsky function is no longer locally conformal at $z= \pm 1$. It follows from the formula

$$
\frac{w-1}{w+1}=\left(\frac{z-1}{z+1}\right)^{2}
$$

that Zhukovsky map doubles the angles between two curves passing through $z= \pm 1$.

The inverse map, considered in Ahlfors, is given by a formula

$$
z=w \pm \sqrt{w^{2}-1}
$$

and maps the complement the interval $[-1,1]$ onto the exterior of S^{1} (sign 'plus') or onto the interior of S^{1} (sign 'minus'). Here $\sqrt{w^{2}-1}$ is understood as the principal branch with the cut along $[-1,1]$.

Let γ be a circle passing through -1 and 1 and having an angle $\alpha<\pi / 2$ with the real axis. Its $2-1$ image is a curve connecting 1 and -1 in the upper half-plane, which has an angle 2α with the real axis at $z=1$ (see Fig. 1). Moreover, Zhukovsky function maps conformally both the exterior and interior of the circle γ onto the complement of this curve. Consider another circle passing through $z=1$ and touching γ at this point. Then Zhukovsky function maps the interior of these two circles on the domain (see Fig. 1), which represents the airfoil (profile of the airplane wing).

Fig. 1

